Kaldi是专门为语音识别的研究人员创建的语音识别工具。它是用C++编写的,并在Apache 2.0许可证下发布,这是限制最少的开源许可。与Whisper和DeepSpeech等专注于深度学习的工具不同,Kaldi主要专注于使用老式可靠工具的语音识别模型。这些模型包括隐马尔可夫模型(Hidden Markov Models)、高斯混合模型(Gaussian Mixture Models)和有限状态传感器(Finite State Transducers)。
优点:
- Kaldi非常可靠。它的代码经过彻底验证。
- 虽然它的重点不是深度学习,但它有一些模型可以实现转录服务。
- 它非常适合学术和行业相关的研究,允许用户测试他们的模型和技术。
- 它有一个活跃的论坛,提供适量的支持。
- 还有一些资源和文档可以帮助用户解决任何问题。
- 作为开源,有隐私或安全问题的用户可以检查代码以了解它是如何工作的。
缺点:
- 它使用传统的模型方法可能会限制其准确性水平。
- Kaldi不是用户友好的,因为它只是在命令行界面上运行。
- 它使用起来相当复杂,适合有技术经验的用户。
- 你需要大量的计算能力来使用这个工具包。
ESPnet是一个基于Apache 2.0许可证发布的开源语音转文本软件,它提供端到端语音处理功能,涵盖了ASR、翻译、语音合成、增强和日志化等任务。该工具包采用Pytorch作为其深度学习框架,并遵循Kaldi数据处理风格。因此,您可以获得各种语言处理任务的全面配方。该工具支持多语言。可以将其与现成的预训练模型一起使用,或根据需求创建自己的模型。